
RoboDutchman

Team A: Robo Dutchmen
Manoj Bhat

Oshadha Gunasekara
Calen Robinson
Kenny Sladick

May 8, 2020

1

1 Abstract

As more companies begin to invest in technology to automate simple tasks, it isn’t a question
of when automation will affect a given company, but how it will be implemented. Should a device
be created to fulfill the tasks/services of a human operator within the current infrastructure? Or
should the entire infrastructure be replaced with updated, computer controlled devices? In the
naval industry, the latter approach is embraced by research company Leidos in their autonomous
unmanned surface vehicle the Sea Hunter. This ship has revolutionized the way we think about sea
navigation, and begged the question: Can the systems that power and maintain the Sea Hunter be
translated to a large-scale cargo ship?

Leidos is at the forefront of this research, and they currently believe it will be more cost-
effective to develop an autonomous robot that will help performmaintenance on the various electro-
mechanical devices found on a cargo ship, rather than designing and building new cargo ships
with the Sea Hunter’s infrastructure. Our team was tasked with developing this robot, which is
able to manipulate all valves and breakers on a mock-up testbed. With RoboDutchman, we took
a minimalist approach to cut down cost and complexity, investing more time into developing a
robust planning algorithm. By leveraging the Robot Operating System, we’ve integrated vari-
ous sensors and controllers that allow for accurate localization in any environment, fast object-
detection/classification, and optimized task execution. This platform allows for seamless integra-
tion of other sensors/software that can improve the future performance of the robot.

i

2 Table of Contents

1 Abstract i

2 Table of Contents ii

3 Project Description 1

4 Design Requirements 1
4.1 Explicit Requirements . 1
4.2 Implicit Requirements . 1
4.3 Additional Requirements . 2

5 Functional Architecture 2

6 Design Concepts 3
6.1 Chassis . 3
6.2 Robot Arm . 4
6.3 End-Effector . 5
6.4 Base Localization . 6
6.5 Base Planning . 6
6.6 Object Detection and Classification . 6

7 Cyber-Physical Architecture 7

8 System Description and Evaluation 7
8.1 Chassis . 8

8.1.1 Frame . 8
8.1.2 Locomotion . 9

8.2 Robot Arm . 9
8.3 End-Effector . 11
8.4 Base Localization . 12

8.4.1 Dead Reckoning . 12
8.4.2 Map Creation . 13
8.4.3 Particle Filter Localization . 13

8.5 Base Planning . 14
8.5.1 Rotational Planner . 14
8.5.2 Linear Planner . 14

8.6 Arm Planning . 15
8.6.1 Interfacing with HEBI ROS library . 15

ii

8.6.2 Kinematics . 15
8.6.3 Trajectory Generation . 15
8.6.4 Executing Trajectories . 15
8.6.5 Interfacing with the central planner . 16

8.7 Vision system . 16
8.7.1 Masking with Colorspace . 16
8.7.2 Object detection and classification . 16
8.7.3 Object tracking strategy . 17
8.7.4 Interfacing with central planner . 17

8.8 Integration and Evaluation . 18

9 Project Management 19
9.1 Schedule . 19
9.2 Team Responsibilities . 19
9.3 Budget . 19
9.4 Risk Management . 19

10 Conclusions 19
10.1 Lessons Learned . 19
10.2 Future Work . 20

11 References 21

12 Appendices 22
12.1 Budget . 22
12.2 Risk Management . 22
12.3 Schedule . 22
12.4 Code and Documentation . 22

iii

3 Project Description

The goal of this project is to develop an autonomous mobile robot which can assist the crews of
large ships in operating their vessels. The primary function of this robot is to interface human facing
elements in the ship, such as valves and breakers. The robot needs to be able to autonomously 1)
move to their location and 2) change the state of valves and breakers. However, this robot is not
concerned in dealing with all the complexity of a ship, such as ladders, wet floors, the motion of
the ship in the waves, etc.

4 Design Requirements

4.1 Explicit Requirements

The following requirements are created from the provided project specifications for ShipBot.

Requirement ID Requirement
1 Robot size must not exceed 1.5’ (width) x 1.5’ (depth) x 2.5’ (height).
2 Robot must have a dedicated power supply.
3 Robot must be robustly constructed.
4 Robot must not damage anything with which it interacts.
5 Robot must be able to parse a mission file.
6 Robot must be able to set the desired state of breakers and valves.
7 Robot must finish initial calibration procedures within a 1-minute period.
8 Robot must complete mission within target mission completion time.

4.2 Implicit Requirements

The following requirements are implied from the explicit requirements. Their implications are
represented by the requirement IDs.

Requirement ID Requirement
3.1 Robot must ensure all components stay attached at all times.
3.2 Robot must not use prototype kits or toys in the construction.
2.1 Robot must be able to run for at least 20 minutes.
2.2 Robot must be able to distribute power to all components.
6.1 Robot must be able to identify the state of a breaker.
6.2 Robot must be able to identify the interaction position of a breaker.
6.3 Robot must be able to identify the state of a valve.
6.4 Robot must be able to identify the interaction position of a valve.

1

4.3 Additional Requirements

These requirements are created by our chosen coolness factors: increased mobility independence,
ability to accept multiple missions in a single file, and ability to determine an efficient order to
enact all missions.

Requirement ID Requirement
2.3 Robot must get power from an on-board battery.
2.4 Robot must be rechargeable.
5.1 Robot must be able to parse multiple mission files.
5.2 Robot must be able to determine efficient order to handle all missions.

5 Functional Architecture

Figure 1: Functional Architecture

Above in figure 1, we see that there are four primary components to our functional architecture:
Power, Sensors, MotionControl, andCentral Processing. Due to the COVID-19 pandemic, wewere
unable to properly set up battery operation. As a result, our system is tethered to AC power. The
Central Processing component is further broken down in our ROS Software Architecture diagram,
shown below in figure 2.

Here, we see six custom ROS nodes: Base Localizer, Base Planner, Target Localizer, Central
Planner, Arm Localizer, and Arm Planner. The Base Localizer and Arm Localizer use information
from the Hebi actuators, using the hebiros ROS package, to determine the current position and
orientation of both the mobile base and the robot arm end-effector. The Base Planner and Arm
Planner use feedback-based methods to plan trajectories within the robot’s workspace. The Target

2

Figure 2: ROS Software Architecture

Localizer uses the Intel Realsense D435 image, using the realsense-ros ROS package, to classify
and identify the state of valves and breakers. The Central Planner acts as the central logic behind
the system, parsing mission files and sending commands to each of the planning nodes.

6 Design Concepts

6.1 Chassis

In many ShipBots that we studied from previous years, we saw an omnidirectional drive imple-
mented for base locomotion. As we watched the videos of these robots perform, we noticed that
this method of driving was prone to slipping while interacting with a target on the testbed. We also
noted that implementing this meant more actuators which increased power consumption and de-
bugging difficulty. For these reasons, we chose to implement a differential drive with two passive
casters, shown in our initial sketch in Figure 3. Another feature for which we wanted to utilize
our base was as another rotational degree of freedom for our robot arm, rather than having another
actuator to power at the base of the arm. Since we chose to use the base for this purpose, we had
to consider the shape of the base. As we observed the test bed, we noticed a pronounced corner in

3

the test bed that could pose a challenge to a differential drive robot. For this reason, we chose to
make our base a circle so that we could turn in place and not get stuck in the corner.

Table 1: Base Drive Pugh Matrix

Omni-Drive Differential Drive
Criteria Weight Raw Score Weighted Score Raw Score Weighted Score

Ease of Fabrication 3 -1 -3 1 3
Cost 1 -1 -1 1 1

Power Consumption 2 -1 -2 1 2
Speed 2 1 2 -1 -2

Ease of Control 2 1 2 0 0
Total -2 4

Figure 3: Differential Drive with a rounded base

6.2 Robot Arm

We decided to use a 4 degree of freedom robotics arm to interact with the targets. As depicted
in figure 4, our arm has one shoulder joint, one elbow joint, and two wrist joints. Because the
shoulder is only one joint, the arm cannot rotate about the vertical plane, which means that its
work space is planar. In order to position the end of the arm at an arbitrary point in 3D space it is
necessary to move the entire robot base. While this does complicate the software, we made this
design decision for two reasons: fewer joints increase stability, as well as decrease complexity for
planning trajectories, which makes the arm perform faster.

4

Figure 4: Image of 4 DOF robot arm

6.3 End-Effector

As we observed ShipBots from recent years, we found that the end-effector known as the ”Grannu-
lar Jammer” was quite popular. It seemed relatively simple to make and it allowed for a custom fit
to any surface it was pressed upon. Another end-effector we found interesting was from Team E -
Pirates from Spring 2019, utilizing a multi-pin spring loaded design. Upon doing a trade study on
both of these (shown in Table 2, we found that the Spring-Loaded multi-pin end-effector would be
easier to fabricate, give us enough dexterity to complete the course, and most importantly it was
a passive element, which meant fewer components to power, debug, and integrate into the central
planner. A very rudimentary sketch of the end-effector we chose is shown in Figure 5.

Table 2: End-Effector Pugh Matrix

Granular Jammer Spring-Loaded Multi-Pin
Criteria Weight Raw Score Weighted Score Raw Score Weighted Score

Ease of Fabrication 3 0 0 1 3
Cost 1 1 1 0 0

Dexterity 2 1 2 0 0
Speed 2 -1 -2 1 2

Ease of Control 2 1 2 0 0
Total 3 5

5

Figure 5: Cross-section sketch of the spring-loaded multi-pin end-effector.

6.4 Base Localization

In order to determine the position of the robot on the course, we decided to map our position
relative to a generated map. To generate this map, we fused dead reckoned estimates from the Hebi
Actuators along with LIDAR information from the RPLIDAR A1 in a SLAM algorithm. For our
implementation, we decided to use the gmapping ROS package [2] to handle the mapping portion
of localization. To localize within this map, we would fuse the dead reckoned estimates with the
LIDAR data using a particle filter to determine our position on the map. For our implementation,
we decided to use the AMCLROS package [1] for the particle filter portion of the base localization.

6.5 Base Planning

In planning the base motion from some state A (position and orientation) to some other state B, we
decided to take a three-step approach. First, the robot would pre-rotate to the position which would
best allow the robot to move straight to the target. Then, the robot would move either straight
forward or straight backward toward objective B. Afterwards, the robot would post-rotate until
the robot’s current orientation matched that of objective B. To incorporate feedback into the base
planning loop, a proportional controller dependent on orientation error was used to determine to
determine the angular velocity sent to the robot during the rotation components. On the straight
component, Pure Pursuit was used to accurately follow a straight line.

6.6 Object Detection and Classification

In the vision system, we decided to use D435i sensor which has a single 1280x1024 resolution
camera and a IR sensor for measuring the depth along with an IMU sensor for reporting the motion
of the camera.We utilize the camera and IR sensor to measure depth of each pixel and get corre-
sponding position. We can also generate a point-cloud for each 2D pixel and depth. But during

6

final stages, we ended up majorly employing the camera for Target Bounding box detection and
classification.

7 Cyber-Physical Architecture

In figure 6, we see the Cyber-Physical architecture of RoboDutchman. Here, we see that there are
two routers, a local router and a main router. The local router allows the Jetson Nano to commu-
nicate with both the Hebi modules as well as the main router. The main router is connected to the
internet, which allows us to setup SSH and NX protocols for remote access of the Jetson Nano.

Figure 6: Cyber-Physical Architecture

8 System Description and Evaluation

7

Figure 7: Labelled Picture of RoboDutchman

8.1 Chassis

Due to limited access to fabrication resources because of the COVID-19 pandemic, any redesigns
to the base had to be printed on a personal 3D printer.

8.1.1 Frame

We constructed the chassis out of slotted aluminum profiles and 1/4” laser-cut plywood, which is
shown in Figure 8. Slotted aluminum was chosen for its strength-to-weight ratio, and it was used
to bear the weight of the other components of our robot. Another advantage to using the slotted
aluminum was its ease of assembly, as well as ease of adjustment in case of design changes. Figure
9 shows the initial location of the shoulder joint of our robot arm, while Figure 10 shows the updated
location of our robot arm. This adjustment was made so that we could more easily reach the targets
on the testbed, and was very easy to make because of the slotted aluminum profiles used in the
frame.

8

Figure 8: T-Slot aluminumwas used for the frame and 1/4” plywoodwas used to create the platforms
for the electronics used by the RoboDutchman

Figure 9: In our initial design, we had the robot arm located much closer to the base of the robot.

8.1.2 Locomotion

To drive the wheels of the robot, we chose to use Hebi X8-9 Actuators. The driving factor behind
this decision was that the we were also using Hebi actuators for our robot arm, and so it was much
easier to plug/power two more Hebi Actuators both from a hardware integration perspective, as
well as a software integration perspective. Since we were the only ShipBot team this year, we had
access to enough Hebi Actuators to do this. This differential drive is shown in Figure 11

8.2 Robot Arm

We decided to use Hebi actuators to actuate our arm. Hebi modules are smart actuators which
are easy to integrate into a robot arm, have built in PID tuning mechanisms, can interface with
ROS, and have a sufficient torque output. As a result, we decided that these actuators would be
the easiest to integrate into our robotics system. One drawback of these actuators is that they have
serial elasticity, so they are not stiff or precise. As a result they tend to sag when the arm is carrying
a load. However, they serial elasticity allows the robot arm to be flexible when the arm accidentally
collides with an obstacle, which mitigates damage to both the environment and the robot arm. The

9

Figure 10: In our final design, we elevated the robot arm further away from the base, allowing us to
access the all valves and breakers on the testbed more easily. This was an easy and fast adjustment
because of the slotted aluminum profiles used to construct the frame of our robot.

Figure 11: The two driven wheels were actuated by Hebi X8-9 Actuators, with an output bearing
capacity that could withstand a robot in excess of 400lbs when coupled together.

serial elasticity is a design element of the the HEBI actuators that allows them to detect the amount
of force that they are applying, but time constraints prevented us from using force feedback while
controlling the arm. Force feedback was not necessary for the switches and valves. However,
during testing we noticed that it was difficult to flip the breakers with only position and velocity
control. Further more, some of the HEBI modules would over heat when making repeated attempts
to flip the breakers.

10

8.3 End-Effector

Since we chose to use a spring-loaded multi-pin end-effector, we had to ensure that the pins would
have an interface with the springs. Initially, we planned to use E-style retaining rings. However,
due to COVID-19, we didn’t have access to a metal shop to machine the pins with a groove to
work with this type of retaining ring. Because of this, we had to choose push-on retaining rings.
Unfortunately, these types of retaining rings are much larger in diameter, meaning the pins could
not be as close to each other as originally intended in order to avoid hardware interference. A cross
section of the final end-effector design is shown below in Figure 12. An open view of the inner
spring enclosure is shown in Figure 13.

Figure 12: The end-effector contains spring-loaded pins in one enclosure, which is light gray in this
image. Then, an outer enclosure (dark gray) was attached to the Hebi wrist 2, which can be seen
Figure 4. Once the outer enclosure was on the wrist, the enclosure with the spring-loaded pins was
screwed into the outer enclosure, and finally the two were screwed together to avoid unscrewing
the end-effector while turning valves.

11

Figure 13: An image of the inner enclosure that housed all of the springs/pins. A cover went over
this enclosure to load the springs.

8.4 Base Localization

As stated in our Design Concepts, the base localization utilized two components: gmapping for
map creation and AMCL for particle filter based localization within the map. With each of these
components came a number of challenges in assuring a desirable localization estimate. For both of
these components, we needed to get an initial Dead Reckoning estimate using the Hebi actuators.

8.4.1 Dead Reckoning

Dead Reckoning is a classic way to get a very rudimentary estimate of our state with only encoder
feedback. The basic premise is to determine the linear (v) and angular (w) velocity and update the
state using the following update rule:

x = x+ v cos(θ)∆t

y = y + v sin(θ)∆t

θ = θ + w∆t

This method alone, however, does not produce an accurate enough estimate. To get a better esti-
mate, we use a more robust integrator approximation, known as Runge-Kutta [5]. This provides a
better state estimate that can be used for both the map creation and the particle filter estimate.

12

8.4.2 Map Creation

Using the Dead Reckoned state estimate, we can utilize gmapping [2] to create a map of the envi-
ronment. To do this, our process required us to create a bag file where the robot remotely travels
around the course, allowing us to collect both LIDAR andHebi encoder data. By running gmapping
and the bag file on a separate computer, we were able to create a map. Initially, our parameters were
not ideal, resulting in the first map shown in figure 14a. After tuning the gmapping parameters, we
were able to get a map with better resolution, as shown in figure 14b.

(a) Initial map
(b) Final tuned map

Figure 14: Maps Generated Using gmapping

8.4.3 Particle Filter Localization

With the Dead Reckoned state estimate and the generated map, we can utilize AMCL [1] to ac-
curately determine the robot’s state within the map. This is desired over purely Dead Reckoning
due to the likelihood of drift with Dead Reckoning as well as the potential for the wheels to slip
on the surface. In order to tune the AMCL parameters, we used the real robot, commanding the
robot to move in a fixed manner, initially a straight line. We would visualize the estimate rviz. If
we saw that the estimated LIDAR points matched the expected position on the map, we were able
to conclude that our parameters were properly tuned. Below, in figures 15a and 15b, we can see
an example of a situation where the estimated LIDAR points do align with the map and a situation
where the estimated points do not align with the map.

In the tuning process, we identified that the LIDAR information often lags behind the state
estimate, as the LIDAR is sending information at a lower update rate than the state estimate. As
a result, there is some inherent lag to the particle filter. As a result, in determining whether our
parameters result in proper convergence, we wait until the LIDAR values have settled after moving.

13

(a) Aligned LIDAR points (b) Unaligned LIDAR points

Figure 15: Localization Estimates Using AMCL

8.5 Base Planning

Our Base Planner went through two main iterations. Initially, the planner was developed to be
open-loop. This meant that no feedback was involved. However, after developing and testing the
planner, it was evident that due to slip in the environment, the error in the robot’s movements using
this open-loop planner was far too high. As a result, a closed-loop system was developed. To get
from point A to point B using this system, as mentioned in the Design Concepts, there were three
parts: a pre-rotation to point towards point B, move straight to point B, and a post-rotation to match
the orientation of point B. This meant, there were two separate planners: a rotational planner and a
linear planner.

8.5.1 Rotational Planner

The rotational planner was a bounded proportional controller. This meant that we would send
angular velocity commands based on the following equation:

w = min(kθ(θdes − θcur), θmax)

By tuning the value of the proportionality constant, kθ, we were able to get a fast and accurate
response with the rotational planner.

8.5.2 Linear Planner

The linear planner used both a bounded proportional controller to determine linear velocities as
well as pure pursuit [4] to correct the trajectory by also determining a desired angular velocity.
Similar to the rotational planner, our velocity was calculated using the following equation:

v = min(kd
√

(xdes − xcur)2 + (ydes − ycur)2, vmax)

14

With pure pursuit [4], we could tune our lookahead distance and calculate the desired curvature
γ to stay on the straight path based on feedback from the base localization. Using this gamma, we
could calculate an angular velocity w to be sent along with the linear velocity using the curvature
property w = v × γ.

8.6 Arm Planning

The arm planner has five primary functions: Interfacing with the HEBI ROS library [3], performing
forward and inverse kinematics, creating work space trajectories, executing work space trajectories,
and interfacing with he central planner. This arm planner is relatively simple and straight forward,
but it is robust and gets the job done.

8.6.1 Interfacing with HEBI ROS library

This first responsibility of the arm planner is to connect to the HEBI modules via the HEBI ROS
library [3]. This is done using a series of service calls to the HEBI ROS node which initialize the
HEBI module group.

8.6.2 Kinematics

Even though our arm has 4 DOF, our kinematics treats it like a 3 DOF arm. The last joint, wrist 2,
is controlled separately from the other three joints. This design allows us to use conventional RRR
forward and inverse kinematics for our arm.

8.6.3 Trajectory Generation

Trajectory generator can create arbitrary linear work space trajectories. It does this by linearly
interpolating between work space way points, then performing inverse kinematics on each of the
interpolated way points. This method optimizes for precision and ease of implementation, but does
not create a minimum jerk trajectory. In order to create protect the HEBI modules from jerking, we
make sure that the robot arm moves at sufficiently slow speeds.

8.6.4 Executing Trajectories

At first, our arm planner would give our interpolated work space way points to the HEBI library,
which would then create a minimum jerk trajectory based off of our way points and execute it.
However, we found that the HEBI library was not accurate or predictable enough for our use case.
Instead, the arm planner manually sends position and velocity commands in the configuration space
to the HEBI modules at 200 MHZ. Manually sending the commands produces more accurate and
reliable trajectories.

15

8.6.5 Interfacing with the central planner

In order to be a non-blocking function, we decided to wrap the functionality of the arm planner
node in a ROS action server. This allows the central planner to make a non-blocking call to the arm
planner node, perform other work while the arm planner executes its trajectory, then poll the arm
planner to see when it has finished its work. Because the arm planner functionality is non-blocking,
it allows our robot to do other tasks in parallel.

8.7 Vision system

The vision system interacts with the central planner and sends commands based on Target location
and classified recent state.

8.7.1 Masking with Colorspace

To understand the shape and structure of the Target, we focus on using prior information of colors
on the target objects and segment the object from image. A practical solution to image segmentation
is utilizing the color spaces to match and mask. The matching is done by providing a target color
and threshold-ing pixel intensity at either HSV or RGB channel space. As from figure 16 it can
be observed that HSV space has a spike of blue. We threshold on HSV space for each queried
image frame to segment out objects, for both blue and orange objects. We then extract a blob from
this segmentation and fit a circle with center and radius, as a key-point. Although this method is
time-complex, its precision and accuracy is 99% which is good for our application. In future, well
trained deep learning methods can be employed for the task.

Figure 16: Image segmentation using Color-space thresholding. Left two images show RGB and
HSV color spaces. Right image shows Masking performed on data recorded on D435 sensor

8.7.2 Object detection and classification

For the task of object detection and classification, we employ a Deep Learning model. We have
about 30 frames annotated for training along with state-classes i.e On/Off for standing valves, one
for shuttle and wheel valve, and only 3 for 3 breaker switches and we employ masking along with

16

this to determine state. We chose YoloV3 as our base model. Vanilla YoloV3 pretrained/retrained
initially doesnt perform very well. We used extra skip connections and added dialated convolutions
into the YoloV3-SPP model which jumped the accuracy from 70% to 98% Precision. The model
is trained with Pytorch. We were unsuccessful in using ONNX for exporting custom model to
TensorRT, hence we wrote model code in C++ utilizing Nvidia’s NvInfer library for Jetson device.
Further we also use Quantization (FP16) to improve prediction speed. Hence for any new annotated
data we train on pytorch, generate txt file of weights and compile a serialized engine which runs
inference in real-time. The detection and classified model is named ”Modified and Quantized
YoloV3-SPP” (MYDT).

Figure 17: Training and inferred samples. The left four images show training samples along with
state-classes for standing valve. On the right is the detection from the model with prediction score

8.7.3 Object tracking strategy

We used a distance based tracker to track the bounding boxes (BBOX) for every new detection and
keep on assigning the values according to the Functions of the tracker:

1) State generation: The state is generated based on both masking data and the detection of
BBOX. The advantage of using a masking procedure is that you get exact location of the breaker
switch due to its peculiar color.

2) Location generation: TheMYDT does the major part of the job in detection of exact location.
For example, for a new image frame input to the tracker, the get_mask function will generate

mask which will extract a blog of orange color. This blob key-point will have a center and radius.
when this center is on top of the BBOX i.e the y-axis value of the keypoint center is greater than
that of the BBOX center, it means that the breaker switch is on. When lower, it means that its off.
Hence avoiding another extra class for MYDT training for classification.

8.7.4 Interfacing with central planner

The tracker directly talks to the central planner. As central planner sends a signal by publishing a
topic, the tracker receives and forwards another signal to the MYDT. The MYDT is a TensorRT

17

Figure 18: Real-time Query-based detection. The central planner queries the Tracker to send it
detection. Here the left image is what camera sees and Blue is the detected box whereas green
circle is the mask keypoint. On right image, the same instant robot state illustrated, when the robot
sees the valve in green box through the camera in blue box.

inference engine, it takes about average 0.53s for predictions on each new image. While theMYDT
works, the tracker starts another parallel process of Masking. As the function of masking process
is to generate mask based on colors, it identifies and stores a center keypoint and radius of the
blob on a global variable. As soon as detector is ready with the prediction, it publishes a message
consisting of anchor point and size (x, y, w, h) of each BBOX back to the tracker. Using the stored
mask and stored detection, for every signal from central, the tracker publishes back the state and
location of the target. This is made such that the central planner can send messages whenever it
needs, and don’t need to run the detector all the time. Hence reducing the gpu and memory load,
needed for other important processes like mapping and trajectory generator of HEBIs. But note
that this framework can run for any fps considering the tracker system uses BBOX interpolated
tracking.

Figure 19: Target localizer connectivity

8.8 Integration and Evaluation

The integration of our components was split into the integration of our mechanical and hardware
subsystems and the integration of our software subsystems. Although we did finish a majority of
the mechanical integration prior to Spring Break, some of the mechanical integration as well as all
of the software integration occurred after Spring Break. At this time, we were working remotely,

18

and as such our procedure for integration had to change. Kenny was the only person with physical
access to the robot.

To perform our integration, we setup the SSH and NX protocols to allow us to edit code and
visualize the Jetson Nano’s desktop remotely. After working on our code on our local machines,
we would schedule times to meet with Kenny to test the code on the physical robot. This definitely
proved to be doable, albeit more time consuming than normal.

9 Project Management

9.1 Schedule

The schedule, as shown in figure 22, shows the initially planned deadlines for our robot as well as
the primary class deadlines we must meet. We have planned to complete our prototype robot early
to give us time to account for unexpected occurrences and further polish the robot. This also allows
us to account for our team members’ lowering availability as the semester progresses. However,
due to the COVID-19 pandemic, our schedule has shifted and changed to account for our transition
to remote development.

9.2 Team Responsibilities

Our responsibilities are split up as the following:

1. Manoj Mohan Bhat - Computer Vision and software development and Electronics

2. Kenny Sladick - Mechanical Design and Software-Electronics interface Management

3. Oshadha Gunasekara - Motion Planning, interfacing, Telemetry and Electronics

4. Calen Robinson - Telemetry Management, Software Package Management, Robot Arm De-
velopment

9.3 Budget

Currently our preliminary budget assumes the ability to use motors and motor controllers. This
results in our primary reimbursable budget shown in figure 20.

9.4 Risk Management

Our risks and mitigation strategies are represented in the table in figure 21.

10 Conclusions
10.1 Lessons Learned

Throughout this process, we’ve learned a lot. First, we learned that tuning our subsystems is a
very timely process. For example, initially tuning the base localizer was set to only take a few

19

days. However, in reality, the tuning of this system easily took an entire week. We also greatly
underestimated the time it would take to tune the PID gains on the arm, and so we learned that if
this needs to be done virtually, that either there needs to be a lot of time set aside to do this, or
ideally a more systematic approach could be taken to speed up the process. Lastly, we all learned
more about patience, not only with robotic system development, but with each other as we did our
best to communicate our ideas and problems with each other virtually, which would’ve been much
more efficient in person if everyone could be with and see the robot.

10.2 Future Work

For future work, this robotic system would benefit from having a smaller end-effector. This end
effector would allow it to manipulate the breakers with better ease, minimizing the likelihood in
getting stuck on the uneven surface of the breaker. Also, better tuning of the PID gains of the
Hebi actuators would benefit our ability to more accurately control the robot arm to manipulate
the valves and breakers. The arm would benefit from having a minimum jerk trajectory generator,
as well as a force-control trajectory generator, to enable switching breakers in the more resistant
direction. Something else that would benefit the robot would be to power the system remotely
with an on-board battery, making it easily deployable. Further, having a backup battery in case
of emergencies would be ideal, as the end-use of this robot would be on a ship with very few or
no people. Along with these, vision management is also a hard topic which could be imporved.
The basic requirement is fruitful feedback from the vision system into the planner. This can be
done through Image detection, but is complex in time and memory. We used the vision system but
not to its fullest potential. A better management/engineering of this system would make the robot
solve dynamic target locations problem and make it robust in reaching desired state and performing
desired action.

20

11 References

[1] amcl - ROS WIKI. URL: http://wiki.ros.org/amcl. (accessed: 08.05.2020).

[2] gmapping - ROS WIKI. URL: http://wiki.ros.org/gmapping. (accessed: 08.05.2020).

[3] hebiros - ROS WIKI. URL: http://wiki.ros.org/hebiros. (accessed: 08.05.2020).

[4] Implementation of the Pure Pursuit Tracking Algorithm. URL: https://www.ri.cmu.
edu/pub_files/pub3/coulter_r_craig_1992_1/coulter_r_craig_1992_1.pdf.
(accessed: 08.05.2020).

[5] Lab 3: Dead Reckoning. URL: https://www.cs.cmu.edu/~16311/s07/labs/NXTLabs/
Lab%203.html. (accessed: 08.05.2020).

[6] RoboDutchman. URL: https://sites.google.com/view/flyingdutchman. (accessed:
08.05.2020).

[7] RoboDutchmen/RoboDutchman. URL: https://github.com/Robo- Dutchmen/Robo-
Dutchman. (accessed: 08.05.2020).

21

http://wiki.ros.org/amcl
http://wiki.ros.org/gmapping
http://wiki.ros.org/hebiros
https://www.ri.cmu.edu/pub_files/pub3/coulter_r_craig_1992_1/coulter_r_craig_1992_1.pdf
https://www.ri.cmu.edu/pub_files/pub3/coulter_r_craig_1992_1/coulter_r_craig_1992_1.pdf
https://www.cs.cmu.edu/~16311/s07/labs/NXTLabs/Lab%203.html
https://www.cs.cmu.edu/~16311/s07/labs/NXTLabs/Lab%203.html
https://sites.google.com/view/flyingdutchman
https://github.com/Robo-Dutchmen/Robo-Dutchman
https://github.com/Robo-Dutchmen/Robo-Dutchman

12 Appendices

12.1 Budget

Figure 20: Budget Table

12.2 Risk Management
12.3 Schedule
12.4 Code and Documentation

Our code for this project is on Github [7]. Media and further documentation can be found on our
website [6].

22

Figure 21: Risk Management Table

23

Figure 22: Schedule

24

	Abstract
	Table of Contents
	Project Description
	Design Requirements
	Explicit Requirements
	Implicit Requirements
	Additional Requirements

	Functional Architecture
	Design Concepts
	Chassis
	Robot Arm
	End-Effector
	Base Localization
	Base Planning
	Object Detection and Classification

	Cyber-Physical Architecture
	System Description and Evaluation
	Chassis
	Frame
	Locomotion

	Robot Arm
	End-Effector
	Base Localization
	Dead Reckoning
	Map Creation
	Particle Filter Localization

	Base Planning
	Rotational Planner
	Linear Planner

	Arm Planning
	Interfacing with HEBI ROS library
	Kinematics
	Trajectory Generation
	Executing Trajectories
	Interfacing with the central planner

	Vision system
	Masking with Colorspace
	Object detection and classification
	Object tracking strategy
	Interfacing with central planner

	Integration and Evaluation

	Project Management
	Schedule
	Team Responsibilities
	Budget
	Risk Management

	Conclusions
	Lessons Learned
	Future Work

	References
	Appendices
	Budget
	Risk Management
	Schedule
	Code and Documentation

